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Abstract A computational model is developed to describe convection in volatile liquids evaporating
in capillary tubes. Experimental work has demonstrated the existence of such convective structures.
The correlation between this convection and the phase change process has been experimentally
established. Temperature distribution on the liquid-vapour interface is considered in order
to characterise the minimum of radial temperature gradient required to initiate and orientate
Marangoni convection. Direct numerical simulation using finite volume approximation is used to
investigate the heat and mass transfer in the liquid phase. The case of a capillary tube filled with a
volatile liquid is investigated for various Marangoni numbers, to characterise heat and mass
transfers under conditions close to realistic operating parameters. The simulation shows that a
minimum irregularity in evaporative flux along the liquid-vapour interface is necessary to trigger
thermocapillary convection. The enhancement of heat and mass transfer by Marangoni convection
is also investigated.
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Nomenclature
A ¼ annulus aspect ratio ðA ¼ L=RÞ
L ¼ height of the domain (m)
Ma ¼ Marangoni number

ð¼ 2ð›s=›T ÞDT R=maÞ
Pr ¼ Prandtl number ð¼ n=aÞ
Q ¼ dimensional applied flux (W/m2)
q ¼ dimensionless applied flux
r, z ¼ dimensionless coordinate in the

radial, axial direction,
R ¼ radius of the considered domain (m)
T ¼ dimensionless temperature

ð¼ ðT 0 2 T0Þ=DTÞ

DT ¼ reference temperature difference
ð¼ Q0R=lÞðKÞ

ur, uz ¼ dimensionless velocity in r, z
direction ðu0

rR=a; u0
zR=aÞ

Greek symbols
a ¼ thermal diffusivity (m2/s)
g ¼ rate change tension surface vs

temperature ðg ¼ ›s=›TÞ
l ¼ thermal conductivity (W/m2 K)
C ¼ dimensionless stream function

(C0/aR)
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Introduction
Many technological applications involve evaporation of liquids in confined
environment. The behaviour of wetting menisci accompanied with phase change has
been the subject of extensive studies during the last decades (Morris, 2001). This is a
very important issue in the design of cooling devices like micro-heat pipes; due to the
effects it will have on heat transfer capacity. In addition, given the magnitude of the
local evaporative heat fluxes from the meniscus in these cases there is great potential
for their use as cooling techniques in high power systems. Much work has been carried
out to try to model the evaporation process and predict how the meniscus is affected by
different parameters. Wayner and Potash (Morris, 2001) investigated the transport
processes that occurred in a two-dimensional evaporating meniscus and adsorbed thin
film on a superheated flat glass plate immersed in a liquid. They concluded that a
change in the profile of the meniscus brings about a pressure drop that is sufficient to
give the fluid flow required for evaporation, i.e. it circulates fluid so that it replaces the
liquid that has evaporated and hence allows the evaporation to continue. It was also
shown that in the intrinsic meniscus region fluid flow is brought about by
thermocapillarity while in the evaporating thin film region the fluid flow is entirely
caused by the disjoining pressure gradient between the film and the vapour. The
convection currents formed in the liquid just below the meniscus could increase the
heat transfer coefficient by up to 30 per cent (Khrustalev and Faghri, 1994). This is
presumably due to the assistance of the convection current in bringing liquid from the
bulk region right up to the interface where the heat transfer occurs, and then removing
it again. Furthermore, Molenkamp (1998) demonstrated that in containers with a
diameter greater than a few millimetres, convection motion is dominated by natural
convection (buoyancy). In capillary tubes with a diameter less than a critical value we
can expect that there will be convection rolls due to thermocapillarity, instead of
Rayleigh convection. During evaporation different characteristic regions of the
meniscus are formed by the liquid, such regions are identified by Holm and Golpen
(1979) during evaporation from a grooved plate. The surface tension variations result
from a non-uniform temperature, and drive the flow of the fluid inducing
thermocapillary (or Marangoni) convection. The Marangoni number ratio of the
acting surface tension forces to the viscous forces is used as a control parameter for
such configurations. The challenge remains how to access to local surface tension via
the local temperature; it is of paramount importance to understand the phenomenon. In
recent work, (Höhmann and Stephan, 2002), have investigated the temperature profile
underneath an evaporating meniscus using thermographic liquid crystals (TLC) with a
sub-micron spatial resolution. It is demonstrated that the temperature profile exhibits a
minimum near the contact line where evaporation is largest. The temperature decrease
is thought to be caused by the evaporative cooling effect. Kim and Wayner (1996) have
investigated the evaporative mass flux profile as well as the meniscus thickness for
volatile liquids. They have developed a model relating evaporating mass flux to the

m ¼ dynamic viscosity (kg/m s)
n ¼ kinematic viscosity (m2/s)
r ¼ density (kg/m3)
rC ¼ heat capacity ( J/K m3)
s ¼ surface tension (N/m)

Subscripts
0 ¼ reference
max,

min ¼ maximum, minimum
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meniscus thickness in the macro-region. It has been shown that the evaporation profile
presents a maximum near the contact line. (Sefiane and Steinchen, 2002) conducted
experiments on evaporation of volatile liquids in capillaries showing strong convection
rolls clearly related to evaporation. This convection has been characterised in various
configurations and fluids. Figure 1(a) shows an image of the thermocapillary
convection observed in the evaporating meniscus and the global flow pattern
(streamtraces) that can be obtained by image processing of succesive images as
represented on Figure 1(b). In the experiments, a steady contact angle was investigated
where evaporation takes place in dry air and liquid is supplied to compensate the
evaporation.

A key question is: considering a non-uniform evaporation, what is the minimum
irregularity in the evaporation rate along the liquid-vapour interface, which would
trigger thermocapillary convection? As it is difficult to address this issue
experimentally, a numerical approach is adopted in a simplified 2D geometry close
to the experimental parameters. The aim of this paper is to simulate the effect of
various evaporation profiles along the meniscus. By solving numerically the full model
with appropriate boundary conditions, the velocity field in the bulk liquid is described
for the different considered heat flux profiles. Conditions under which convection
appear and develop are analysed. The results are compared with available
experimental observations.

Figure 1.
Experimental result

showing thermocapillary
convection rolls

(Sefiane and Steinchen,
2002), instantaneous
image (a) and image

processing using PIV
technique showing the

streamlines (b)
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Problem modelling
It is established experimentally that thermocapillary convection related to interfacial
conditions takes place when volatile liquids evaporate in capillary tubes Sefiane and
Steinchen (2002). In the following, the analysis of the controlling parameters is
performed. Indeed, interfacial conditions are dictated by the various heat and mass
fluxes operating during the process. Such typical coupled problem, drawn in Figure 2,
involves heat conduction in the liquid phase towards the interface and inside the solid
wall. Conduction in the vapour phase could be neglected because of the weak thermal
conductivity. At the liquid-vapour interface, the heat flux corresponding to the phase
change must satisfy both the energy and the species conservation. The generated
vapour is transported from the interface to the bulk gas by diffusion. Because the
meniscus wedge is near the solid wall and the cylindrical configuration, a larger heat
flux is transferred to the closer fluid than to the centre resulting in a higher evaporation
rate near the contact line. This non-uniform evaporation rate induces a non-uniform
temperature distribution on the interface. Since surface tension for most liquids is a
decreasing function of the temperature, a surface tension gradient along the interface is
hence generated. This thermocapillary stress will drive convective motion in the liquid
phase. Fluid moves from low surface tension (high temperature) to high surface tension
(low temperature) as observed experimentally (Sefiane and Steinchen 2002).
A thermocapillary convective cell will pump hot liquid from the bulk altering the
interfacial temperature profile, which will influence the evaporating rate. This study
presents a non-conventional Marangoni flow because it is arising from evaporation.
Furthermore, thermal energy is removed from the liquid resulting in local changes in
the temperature and thus in surface tension. This mechanism has been investigated
and discussed under other conditions in many recent works. Such evaporative-driven
Marangoni flows lead to the formation of coffee rings from drying drops (Deegan,
1998). These flows also have been proposed as a way to elongate DNA chains for
subsequent sequencing analysis (Hu and Larson, 2002) and to enhance heat transfer
from menisci in inclined capillary tubes. The present work analyses the necessary
conditions allowing the appearance of convective motion and its interaction with
energy exchange at the L/V interface.

Figure 2.
Heat and mass transfer
mechanisms for an
evaporating meniscus
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Numerical approach
Computational method
The considered meniscus is shown in Figure 2. The configuration involves liquid and
vapour phases separated by a L/V interface. In order to avoid the roughness of the tube
and the contact angle effect a planar interface is considered to focus on the main
interaction between the thermal conditions on the interface and the convection
appearing in the liquid phase. An axisymmetric domain is considered for numerical
simulation. It consists of a rectangular domain of length L and radius R (Figure 3(a)).
The solid wall is maintained at temperature T0. On the free surface a permanent heat
flux is imposed, QðrÞ ¼ Q0 q(r), where q(r) is a dimensionless function of the axial
coordinate r and Q0 the constant flux case considered as reference heat flux used for
the dimensionless temperature. The mass flux across the interface is not considered
explicitly and the evaporation is modeled by the heat flux. Concerning the effect of
mass flux (interface displacement) we model it via moving reference represented by a
Peclet number. For low Pe number we find no significant effect.

Constant, polynomial and Gaussian q(r) distributions (Figure 4) are used to
model different evaporation rates at the free surface. The different concentrated

Figure 3.
Schematical global

problem (a) and the
considered domain for

computation (b)
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profiles allow us to cover evaporation from the isothermal fluid, for the purely
conductive case and correlate the interface concentrating effect with the possible
superheating effect. We underline that the main goal is the identification of the
necessary condition for amplifying the Marangoni convection in order to enhance
the evaporation.

The flow is assumed incompressible and laminar for Newtonian fluid. Physical
properties (density r, dynamic viscosity m, thermal diffusivity a) are assumed
constant and the surface tension s decreases linearly with the temperature ðg ¼
›s=›T , 0Þ:

Using R, a/R 2, ra 2/R 2 and Q0 R/l, respectively, as the scale factor for the length,
time, pressure and temperature, it is possible to write the Boussinesq equation in
non-dimensional form as:

7 · u ¼ 0 ð1Þ

dur

dt
¼ 2

›p

›r
þ Pr Dur 2

ur

r 2

h i
ð2Þ

duz

dt
¼ 2

›p

›z
þ PrDuz ð3Þ

dT

dt
¼ DT ð4Þ

where

d

dt
¼

›

›t
þ u7 and D ¼

›

r ›r
r
›

›r

� �
þ

›

›z2

Figure 4.
Various heat flux profile
imposed on the L/V
interface
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The dimensionless boundary conditions for the investigated problem are summarised
below (shown in Figure 3(b)):

At the symmetry axis r ¼ 0;

›uz

›r
ð0; zÞ ¼

›T

›r
ð0; zÞ ¼ 0 and urð0; zÞ ¼ 0 ð5aÞ

At the solid wall r ¼ 1;

Tð1; zÞ ¼ 1 and uð1; zÞ ¼ 0 ð5bÞ

Imposed heat flux and velocity at the L/V interface:

›T

›z
ðr;AÞ ¼ qðrÞ; uzðr;AÞ ¼ 0 and

›ur

›z
ðr;AÞ ¼ 2Ma

›T

›r
ðr;AÞ ð5cÞ

Far from the L/V interface:

›T

›z
ðr; 0Þ ¼ 0; uzðr; 0Þ ¼ 0 and

›ur

›z
ðr; 0Þ ¼ 0 ð5dÞ

The dimensionless parameters introduced in equations (1)-(5) are the Prandtl number,
Pr ¼ n=a and the Marangoni number Ma ¼ 2ð›s=›TÞDT R=ma:

The problem is solved in the dimensionless domain ½0; 1� £ ½0;A� (A ¼ L=R is the
aspect ratio). In this work, the considered liquid (water, ethanol, etc.) corresponds to
Pr ¼ 10 and high aspect ratios are tested to simulate a long tube. The ratio A ¼ 5 is
found to be sufficient, for a range of Ma, slope and shape of the axial cooling.

A control volume approach (Pantakar, 1980), showing good ability to describe heat
and mass transfers for stiff fluid mechanics problems (Raspo and El-Ganaovi, 2002) is
used to discretise the governing equations (1)-(4) associated with the boundary
conditions (5a)-(5d). The resulting algebraic system is solved using an ADI method
coupled to a block correction. The pressure-velocity interlinking is solved using the
SIMPLE algorithm. The advection-diffusion terms are approximated using a
second-order centred scheme.

Computational details
General validation of the code was undertaken by comparison to the spectral method
results of Kasperski and Labrosse (2000); for details see Bennacer et al. (2002).

A mesh sensitivity analysis was undertaken and the results are summarised in
Table I. Very fine grids near the boundaries are adopted. This refinement is necessary
to resolve narrow singularities flow. The relative difference between predictions using

Nr £ Nz 81 £ 41 101 £ 41 121 £ 41 161 £ 61 191 £ 91 241 £ 121

On the free surface Tmin 0.910 0.910 0.9121 0.9123 0.9127 0.913
Per cent 0.3a 0.3 ,0.2 ,0.1 ,0.1

Ma ¼ 102 Q¼ r 4 urmin
22.72 2.84 2.90 2.96 2.89 2.89

Percent 6 2 0.5 1 ,0.1

Note: aDeviation between the results (relative to the 241£ 121 case)

Table I.
Effect of the mesh
refinement on the

minimum of T and u on
the free surface (A ¼ 5,

Ma ¼ 102 and Pr¼ 10 for
polynomial case)
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a 81 £ 41 mesh and the reference grid ð241 £ 121Þ was less than 6.0 per cent for the
minimum T and ur – velocity component on the free surface. The relative difference
using a 121£41 is less than 0.5 per cent. A minimum of non-uniform 161 £ 61 grids is
used for most computations presented in this paper.

The equations were then solved to ensure conservation of mass, momentum and
energy, both globally and locally, to a prescribed tolerance (typically 1026).

Results and discussion
As mentioned in the “Introduction” the considered sizes ðR , 100mmÞ in the present
study, allow us to neglect the Rayleigh convection. Strong thermocapillary convection
was observed to be resulting from evaporation. The orientation of the convective cells
is found to be dependent on the heat flux distribution along the meniscus. In fact, the
real driving force for convection is the tangential capillary stress at the interface
generated by the interfacial temperature gradient. This gradient is itself influenced by
the convection in the bulk liquid. Indeed, the thermocapillary convection tends to bring
hotter liquid from the bulk toward the interface increasing the temperature at the centre
and consequently the strength of the convection. The local evaporation rate is dictated
by the local vapour pressure, which is strongly dependent on the local temperature and
the vapour diffusion from the interface to the gas bulk. Various heat flux distributions
are applied along the meniscus to determine conditions under which thermocapillary
convection develops (Figure 4). The applied fluxes consider polynomial, Gaussian and
combined profiles. The different applied fluxes do not vary on the same range but we
see in the “Results and discussion” sections (Figures 7 and 8) that the obtained
difference in results is more a matter of profile shape than of order of magnitude. It is
worth mentioning that the saturated exponential profile ðexp þ constantÞ is the closest
one to the realistic profile observed by Kim and Wayner (1996). The direct numerical
simulation allows access to the interfacial temperature (Figure 5). It can be noticed that

Figure 5.
Interfacial temperatures
profiles for the different
imposed heat fluxes
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the saturated expression induces a temperature profile close to the one observed by
Höhmann and Stephan (2002), exhibiting a minimum value near the contact line. The
increases of evaporation near the tube ðr ¼ 1Þ induce the appearance of colder region
with inversion in temperature gradient sign.

Bearing in mind that the radial temperature gradient is the driving force for
any convective motion, Figure 6 describes these gradients for the various
investigated profiles. As a first observation, the inversion of the temperature
gradient occurs for non-linear flux profiles. A polynomial profile induces weak
negative radial temperature gradient leading to rotating convective cells from the
contact line to the centre in disagreement with experimental observations. Taking
saturated exponential shape, the radial temperature gradient presents a minimum
value near the contact line with a negative gradient on more than 80 per cent of
the interfacial domain. Two regions are distinguished, the first one from the centre
to the minimum location where the temperature gradient is supposed to generate a
cell rotating from the centre to the contact line. The convective cell developing in
the second region (near the corner) rotates in the opposite direction. In the
experiment the second cell was not observed, only the main cell rotating from
the centre to the contact line has been clearly identified. This can be explained by
the fact that friction forces hinder the second convective cell near the wall. This
implies that a minimum irregularity in evaporative heat flux will initiate
Marangoni convection. An example of obtained temperature and flow field is
shown in Figure 7 for Ma ¼ 10: The isotherms (Figure 7(a)) show the non-regular
temperature obtained at the L/V interface with the localised cold region (blue
colour) near the tube. The heating is assumed via the tube, the evaporation heat
extraction is maintained by high temperature gradient near the interface-tube
contact and also by the transfer from the bulk via the centre domain (axial
direction). The temperature gradient induces two contrarotating cells (Figure 7(b)),

Figure 6.
Temperature gradients

distribution for the
different applied profiles
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a major one covering the radial extension and a small weak one. The obtained
flow brings hot fluid from the bulk and more energy is convected from the tube
toward the interface as illustrated by the heat lines (Figure 7(c)). The presented
heat lines allow demonstrating the way followed by the energy and how it follow
the resulting flow on the main cell.

Whilst it is experimentally difficult to access the local evaporation rate, the
numerical simulation can be an effective tool to describe the controlling parameters.
The effect of the convection on the interfacial temperature is investigated by varying
the Marangoni number.

Figure 8(a) shows the temperature distribution for various Marangoni numbers.
The temperature decreases uniformly near the tube ðr , 1Þ and is relatively constant
on r ¼ 0 � 1=2: This shape is similar for various considered Ma. It can be noticed that
the minimum value of the interfacial temperature (Figure 8) for different Ma changes
little whereas the interfacial temperature at the centre is strongly affected by the Ma
variation. The increases of the temperature (in the centre of the tube) with the
Marangoni are due to the stronger obtained flow bringing hot fluid from the bulk.
The flow increase is illustrated together with the interfacial radial velocity (Figure 8(b)).
We can see the sign change corresponding to the two-contrarotating cells explained in
the previous section. For higher Ma number the flow shape changes and the main cell
is attracted by the tube resulting in a relative non-flow near the axial domain.

Figure 7.
Isotherms, streamlines
and heat lines for Ma ¼ 10
(flux profile of the form:
exp þ constant)
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Figure 8.
Effect of Marangoni

number on the interfacial
temperature (a) and radial

velocity component (b)
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Figure 9 represents the maximum of the interfacial radial velocity and the maximum
temperature difference on the main cell versus Marangoni number. This temperature
difference represents the magnitude of the acting surface forces.

The interesting remark is
. the constant maximum temperature difference in the diffusive problem;
. the increase in the temperature difference with Ma resulting from the increase in

flow; the convective motion brings hot fluid to the centre of the interface allowing
higher DT;

. above a particular Ma value the DT decreases with fluid flow coming from the
cold region (contact liquid tube point).

The obtained maximum velocity increases with Ma and can be given by the expression
urmax

¼ 0:11 £ Ma1:24: This expression is not valid above the Ma value underlined
before. Above this value, we have also the appearance of a new cell in the axis domain.
The obtained new cell could be due to the symmetry assumption which physically
allows an even number of cells. Loss of symmetry is possible (3D flow) as observed
experimentally by Sefiane and Steinchen (2002).

All presented numerical results are obtained for uniform fixed temperature on the
tube, which is a valid assumption for tube of high thermal conductivity (low Biot
number). In order to check the weight of such an assumption on the obtained result, in
the following section, boundary conditions are modified to apply the heat flux on the
wall of the capillary.

In terms of fluid flow only the main convective cell is observed (Figure 10). The
heating conditions do not permit an inversion of the radial temperature gradient
responsible for the observed secondary flow for the previous case of imposed
temperature. The isotherms show the irregular temperature value obtained on the tube

Figure 9.
Maximum temperature
difference and maximum
velocity versus
Marangoni number
ðurmax

¼ 0:11 £ Ma1:24Þ
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ðr ¼ 1Þ: Physically increasing Ma, allows a better mixing in the liquid and tends to
decrease the obtained maximum temperature.

Conclusion
Considered capillary tubes with a small aspect ratio which allows us to neglect the
buoyancy convection and to focus on the thermocapillary one. A computational model
successfully used for CFD problems involving liquid bridge is extended to capillary
tube configurations.

Various heat flux distributions are applied along the meniscus and conditions
allowing the development of thermocapillary convection are characterised, the study
permits to select a profile close to realistic experimental observations. It is shown that
the inversion of the distribution is responsible for the development and the right
orientation of the Marangoni cells.

The simulation allows access to the interfacial temperature and to characterise its
interaction with Ma convection. Various Marangoni number values are considered to
show flow patterns and temperature distribution.

Main fluid flow regimes are identified strating with the diffusive one for low
Marangoni number; followed by a convective one exhibiting two behaviours. For
moderate Ma, a convective cell occupy the integrity of the domain, flow intensity and
temperature difference increases with Ma. For higher Ma, the convective cell is
attached to the tube (no flow in the axial domain). Temperature difference decreases
with Ma because cold fluid arrives at the interface.

The second regime for critical Ma will be the more interesting one for amplifying
evaporation because it allows us to obtain a stronger flow (maximum DT ) for a lower
Ma (critical Marangoni number).

When the tube is submitted to constant heat flux instead of constant temperature,
we illustrate the non-existence of the weak secondary cell attached to the corner
(L/V interface-tube).

Figure 10.
Isotherms and streamlines

for Ma ¼ 10; the tube is
submitted to uniform flux
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The work continues to analyse the complex interaction between the evaporative
mass flux profile and convection developing in the liquid phase to identify optimal
operating parameters for application to liquid-vapour phase changes in confined
environments.
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